Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells.
نویسندگان
چکیده
The hypoxic tumor microenvironment has been shown to contribute to genetic instability. As one possible mechanism for this effect, we report that expression of the DNA mismatch repair (MMR) gene Mlh1 is specifically reduced in mammalian cells under hypoxia, whereas expression of other MMR genes, including Msh2, Msh6, and Pms2, is not altered at the mRNA level. However, levels of the PMS2 protein are reduced, consistent with destabilization of PMS2 in the absence of its heterodimer partner, MLH1. The hypoxia-induced reduction in Mlh1 mRNA was prevented by the histone deacetylase inhibitor trichostatin A, suggesting that hypoxia causes decreased Mlh1 transcription via histone deacetylation. In addition, treatment of cells with the iron chelator desferrioxamine also reduced MLH1 and PMS2 levels, in keeping with low oxygen tension being the stress signal that provokes the altered MMR gene expression. Functional MMR deficiency under hypoxia was detected as induced instability of a (CA)(29) dinucleotide repeat and by increased mutagenesis in a chromosomal reporter gene. These results identify a potential new pathway of genetic instability in cancer: hypoxia-induced reduction in the expression of key MMR proteins. In addition, this stress-induced genetic instability may represent a conceptual parallel to the pathway of stationary-phase mutagenesis seen in bacteria.
منابع مشابه
سه موتاسیون ژرم لاین جدید در ژن MLH1 در بیماران مبتلا به سرطان کولورکتال ارثی
Abstract Background: Hereditary non-polyposis colorectal cancer is the most common cause of early onset of hereditary colorectal cancer. In the majority of Hereditary non-polyposis colorectal cancer families, microsatellite instability and germline mutation in one of the DNA mismatch repair genes in clouding MSH2, MLH1, MSH6 and PMS2 are found. The Objective of this study was to determine th...
متن کاملEvaluation of gene expression of MLH1 and MSH2 between inhabitants of High Background Radiation Areas in Ramsar, Iran
Introduction: Annual effective radiation dose from all natural sources is approximately about 2.4 mSv and contribution of unnatural or man-made sources is 0.8 mSv. In some places of Ramsar, radiation dose due to radon exposure is about 3700 Bqm -3 while according to US EPA instruction radon levels should be 200 Bq m-3. Amazingly, there is not a meaningful result in the studies...
متن کاملModulation of error-prone double-strand break repair in mammalian chromosomes by DNA mismatch repair protein Mlh1.
We assayed error-prone double-strand break (DSB) repair in wild-type and isogenic Mlh1-null mouse embryonic fibroblasts containing a stably integrated DSB repair substrate. The substrate contained a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene; the tk-neo fusion gene was disrupted in the tk portion by a 22bp oligonucleotide containing the 18 bp recognition site for endon...
متن کاملInvolvement of mammalian MLH1 in the apoptotic response to peroxide-induced oxidative stress.
MLH1 is an integral part of the mismatch repair complex, and the loss of this protein is associated with the acquisition of a mutator phenotype, microsatellite instability, and a predisposition to cancer. Deficiencies in the mismatch repair complex, including the loss of MLH1, result in elevated resistance to specific inducers of DNA damage, yet the mechanisms involved in this DNA-damage resist...
متن کاملDNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells
Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 23 9 شماره
صفحات -
تاریخ انتشار 2003